Схема кабельный тестер трассоискатель с генератором. Самодельный трассоискатель из китайского плеера

Схемы и иллюстрации к статье "Модернизация кабелеискателя ИМПИ-2

Описываемый ниже прибор позволяет обнаруживать подземные коммуникации вблизи источников интенсивных помех, определять местонахождение кабельной трассы без отключения кабеля. Кроме того, в тех случаях, когда кабель под нагрузкой излучает электромагнитные волны, усовершенствованный прибор позволяет обнаружить его, используя только приемник кабелеискателя.

Серийный прибор ИМПИ-2 состоит из двух блоков: генератора и приемника с головными телефонами. Модернизации подверглись оба блока. Изменения, которые внесены в генератор и приемник, на схемах показаны утолщенными линиями.

Чтобы иметь возможность уверенно принимать сигнал генератора в условиях интенсивных помех, в приемник введен узел, позволяющий резко сузить его полосу пропускания, а в генераторе предусмотрена возможность перестройки рабочей частоты. В генераторе в тональный мультивибратор, собранный на транзисторах VT1 и VТЗ, введен переменный резистор R5 (рис. 1).

Таким образом, на выходе генератора появляются пачки импульсов с частотой повторения около 2,5 Гц и с тональной частотой заполнения. Для лучшей различимости звукового сигнала в телефонах приемника на фоне помех в манипулирующий мультивибратор включен дополнительный конденсатор С5. В минусовой провод питания введена развязывающая цепь R19С6.

Генератор смонтирован в металлическом корпусе, в котором предусмотрен батарейный отсек на 12 элементов 373. На коротких трассах в целях экономии энергии можно использовать батарею из трех элементов.

Если определяют местонахождение трассы водопровода, а в колодце соединено несколько труб (см. рис. 3 на вкладке), то сигнальный проводник подключают к той трубе, трассу которой необходимо определить, на расстоянии 30...50 см от стыка труб. Если трубы стальные, то удобнее всего подключать проводник с помощью постоянного магнита, предварительно зачистив место контакта. В остальном методика работы с прибором аналогична описанному выше. Кабелеискателем можно определять местонахождение канализационных магистралей, собранных из неметаллических труб. Для этого к концу сигнального проводника привязывают металлический предмет и опускают его в поток воды в колодце (см. рис. 4 на вкладке).

Когда требуется точно определить трассу кабеля, подходящего к электрической подстанции, имеющей контур заземления и радиальные соединения его с оборудованием подстанции, генератор подключают со стороны потребителя. В этом случае контур заземления и радиальные соединения не внесут осложнений в нахождение трассы. При определении трассы кабеля протяженностью свыше 1,5...2 км, эксплуатирующегося несколько десятков лет и имеющего поврежденную изоляцию на броне из-за длительной эксплуатации, возможно придется подключать генератор два раза - сначала с одного, а затем с другого конца кабеля.

Гражданин К. давно мечтал поселиться где-нибудь на природе, вдали от шумной суетливой цивилизации большого города, среди тишины и покоя гармонии мира. И вот его мечта сбылась: он купил небольшой земельный участок на окраине села под строительство, в хорошем месте и даже с небольшим заброшенным садом… но тут-то ему пришлось столкнуться с таким проблематичным вопросом, как поиск трасс труб и кабельных линий, ведь не зная где они расположены:

  1. При строительстве можно повредить их, а если кабель находится под напряжением, то и подвести под риск собственную жизнь;
  2. О подключении к электричеству, газо- и водопроводу, не зная, где он проходит, можно забыть.

Но как найти эти злосчастные линии? Разрывать весь грунт и искать наугад?.. Вовсе нет! Просто нужно обратиться к помощи такого полезного прибора, как трассоискатель, позволяющего отыскать линии быстро и безопасно. Сегодня прибор можно приобрести в каждом специализированном магазине, можно изготовить трассоискатель своими руками. А как, мы и расскажем далее. Но, прежде, стоит разобраться: что это за прибор такой, трассоискатель.

Немного теории

Итак, трассоискатель - это уникальный прибор, позволяющий обнаружить линию прохождения кабеля или залегания труб. Современные устройства делятся на два типа по принципу работы;

  • Контактный принцип;
  • Индукционная разновидность.

Контактный принцип используется в случае разрыва кабеля, находящегося под напряжением.

Прибор, работающий по индукционному принципу, способен определять, как кабель под напряжением, так и пассивную трассировку, то есть, не подающую активных сигналов подземную коммуникацию. Индукционный метод более сложный и базируется на улавливании устройством высоких частот и регистрации данных показателей на специальном индикаторе.

Трассоискатели также подразделяются на одно- и многочастотные. Первые - наиболее приемлемый вариант, такие приборы несложно смонтировать самостоятельно, и применяются они для определения коммуникаций, расположенных под грунтом в том случае, когда одни трассы не пересекают другие, и, таким образом, не перекликаются исходящие от них сигналы.

Многочастотные устройства - более сложная конструкция и используются для определения сигналов трасс в случае высокой плотности кабельных линий и трубопроводов. Мультичастотные устройства способны определять указанную в программе частоту, не сбиваясь на другие. Современные приборы оборудованы программным обеспечением, что значительно облегчает работу, которая для пользователя заключается в одном нажатии на клавишу и прочтении полученной информации, высветившейся на индикаторе.

Технология сборки

Устройство обладает несложной конструкцией и состоит из двух компонентов - приемника, на который поступает сигнал, и генератора, регулирующего работу прибора. Чем сильнее генератор, тем мощнее будет прибор и значительнее дальность расстояния, на котором он способен определять линии. Так, устройство, работающие от аккумулятора в 24 В, способно трассировать местность на 4 км и работать около ста часов бесперебойно. На работающий по такому принципу трассоискатель схема приведена ниже.

Как видно из чертежа, устройство комплектуется следующим образом: на транзисторе Т1, П14 собирается модулятор и генератор. При условиях, что выключатель приходит в разомкнутое состояние, транзистор с цепью базы создают генератор частой 1 кГЦ. И при включении контура, даже частичном, становится возможным увеличить нагрузку на прибор. Таким образом, при включении конденсатора, резко увеличивается мощность генератора, и он начинает работать в УКВ диапазоне.

Чтобы сконструировать трассоискатель кабельных линий своими руками, необходимо тщательным образом проработать его вторую часть, приемник.

Здесь важнейшим условием является тот факт, что магнитная антенна настраивается на напряжение звуковых частот генератора. Проходящий через транзисторы сигнал создает стабильную схему, а транзисторные каскады обеспечивают необходимое усиление, что гарантирует бесперебойную работу устройства.

Чтобы смонтировать кабельный трассоискатель схема на который приведена выше, потребуется следующее:

  • Берем гетинаксовую плату, которая будет основой будущего прибора.
  • Устанавливаем на переднюю панель клеммы питания.
  • Наматываем на ферритовое кольцо (диаметр 0.8 см) трансформатор первый, а второй - на стальной сердечник.

При сборке руководствуйтесь чертежами, чтобы не допустить ошибки.

Как сделать трассоискатель из старого плеера?

У многих в подвалах и на антресолях можно найти массу занятных вещиц, которые при умелой доработке, могут еще прослужить своему хозяину не один год. Так, из простого старого плеера можно сконструировать трассоискатель.

Добавляем клеммы питания и займемся поисковой катушкой. Для этого разбираем РКН и снимаем контактную катушку. Чтобы демонтировать пластину реле, нужно зажать ее в тисках и при помощи молотка выбить ее из катушки. Эта работа займет пару секунд не более. Теперь, когда все детали для будущего прибора получены, соединяем обмотки и вставляем в сердцевину стержень, который зажимаем с двух сторон.

В качестве зажимов может выступить любой подручный предмет, например пластмассовая трубка, которую достаточно только немного подточить, согнуть, чтобы деталь подходила по размеру и выполняла свою рабочую функцию фиксатора. Потратим еще пару минут на корректировку всего устройства, проверяем разводку, разъемы, надежность конструкции. Затем припаиваем провод к катушке, который после должен быть соединен с усилителем.

Работа готова. Как видите, это совсем не сложно для тех, кто имеет хотя бы элементарные знания в электронике.

Теперь вы знаете, как собрать трассоискатель своими руками схемы и поэтапная инструкция поможет вам выполнить эту нехитрую работу быстро и качественно. А нам только остается напоследок пожелать вам удачи и доброго дня!


При проведении строительных и ремонтных работ довольно часто приходится разыскивать скрытые в строительных конструкциях или проложенные под землёй энергетические, связные и другие кабели, трубопроводы и прочие инженерные коммуникации. Знать точную трассу и глубину их залегания необходимо не только для того, чтобы добраться до объекта для ремонта или замены, но и во избежание его случайного повреждения при выполнении других работ. Для поиска таких объектов существуют приборы-трассоискатели, действие которых основано на регистрации электромагнитного поля, создаваемого находящимся в среде с плохой проводимостью хорошо проводящего объекта, по которому течёт переменный ток определённой частоты, созданный с помощью специального генератора.

Автор предлагает сравнительно дешёвый, по сравнению с промышленными образцами, самодельный многорежимный генератор для трассоискателя. Он способен работать в комплекте с различными поисковыми приёмниками: как промышленными, так и самодельными.

В различной радиолюбительской литературе не раз публиковались описания простейших "искателей проводки", позволяющих обнаруживать провода бытовой электросети 220 В, 50 Гц на глубине несколько сантиметров в бетонной стене. К сожалению, повышая чувствительность приёмника создаваемого такими проводами излучения, не удаётся значительно увеличить глубину обнаружения и точность определения их трассы. Начинают сказываться помехи от других аналогичных кабелей, проложенных поблизости, и различных устройств, питающихся от сети, а их сегодня немало.

Чтобы успешно решить задачу поиска кабеля, проложенного на глубине в несколько метров, а иногда и в несколько десятков метров, в него необходимо подать мощный сигнал более высокой, чем сетевая, частоты (от сотен герц до нескольких десятков килогерц) от специального генератора. Аналогичным образом создают электромагнитное поле вокруг других объектов поиска, например, металлических водопроводных труб. Второй вывод генератора в этом случае заземляют.

Частоту поискового сигнала выбирают исходя из минимального затухания электромагнитного поля в окружающей кабель или другую коммуникацию в среде (почве, бетоне), достаточно удалённую от частоты возможных помех. Кроме того, применяют различные виды модуляции сигнала, придавая ему "окраску", способствующую лучшему распознаванию на слух или с помощью встроенного в поисковый приёмник автоматического обнаружителя.

Комплект из генератора, посылающего поисковый сигнал в разыскиваемый объект, и поискового приёмника называют трассоискателем или кабелеискателем. Сегодня отечественная и зарубежная промышленность выпускает довольно много разновидностей трассоискателей. Стоимость их находится в пределах от 25 тыс. до 350 тыс. руб. Но те, которые дешевле 100 тыс. руб., в большинстве случаев не отвечают предъявляемым к ним в эксплуатации требованиям. Они способны работать лишь на двух-трёх частотах, их генераторы имеют недастаточную мощность для поиска объектов, находящихся на большой глубине.

Описываемый генератор не имеет недостатков, характерных для "дешёвых" устройств аналогичного назначения. Он эксплуатируется более 12 лет, показал высокую надёжность и эффективность при поиске трасс кабелей и инженерных коммуникаций, залегающих на глубине до 50 м, а также при локализации мест повреждения кабельных линий. Общая стоимость комплекта радиодеталей и материалов, необходимых для его изготовления, не превышает нескольких тысяч рублей.

Генератор совместим со многими приёмниками промышленных трассо-искателей отечественного и зарубежного производства, предназначенными для поиска инженерных коммуникаций, проложенных в стенах, земле, трубах, каналах, шахтах.

Высокая мощность, широкие пределы изменения рабочей частоты, различные комбинации выходного напряжения и тока - всё это позволяет уверенно прослеживать даже в условиях сильных помех коммуникации, проложенные на глубине до 50 м на удалении от генератора до 5 км.

Могут быть созданы как сравнительно высокочастотный сигнал, модулированный низкочастотным (звукового диапазона), так и сигналы низкой и высокой частоты по отдельности. Следует отметить, что при работе с предлагаемым генератором необходимо соблюдать меры электробезопасности, так как напряжение на его выходе может достигать опасных для жизни значений.

Основные технические характеристики

Выходная мощность, Вт

при работе от сети......6...250

при работе от аккумуляторной батареи........100

Выходное напряжение, В* ....1, 5, 15, 30, 100, 500

Частота поискового сигнала, кГц..................50; 25; 12,5; 6,25; 3,125; 1,5625; 0,78125; 0,5...3 (плавно)

Частота модуляции, Гц.....500...3000 (плавно)

Частота прерывания поискового сигнала, Гц............0,1...1 (плавно)

Напряжение питания, В

переменное 50 Гц (сеть) .........220

постоянное (аккумуляторная батарея) ................12

Потребляемый ток, А

от сети (без нагрузки/под нагрузкой) .............0,5/1,4

от аккумуляторной батареи, не более...............10

Масса, кг........................12

* Примечание. Измерено на каждом из шести выходов генератора при его работе от аккумуляторной батареи на частоте 1 кГц стрелочным авометром в режиме измерения переменного напряжения.

Схема возбудителя генератора трассоискателя показана на рис. 1. На микросхеме DD1 выполнен задающий генератор, частота которого стабилизирована кварцевым резонатором ZQ1. Двоичный счётчик DD4 уменьшает частоту повторения импульсов задающего генератора в 2, 4, 8, 16, 32, 64 и 128 раз. Селектор-мультиплексор DD5 выбирает сигнал с одного из выходов счётчика для дальнейшей обработки. Управляющие коды на адресных входах селектора формирует, в зависимости от положения переключателя SA2, шифратор на диодах VD1, VD2, VD4- VD10. В табл. 1 показано соответствие между положением переключателя, логическими уровнями на адресных входах и частотой сигнала на выходе селектора и, следовательно, на выходе всего генератора.

Таблица 1

Попожение переключателя SA2

Уровни на адресных входах DD 5

Частота на выводе 3 DD 5, кГц

При установке переключателя SA2 в положение 8 кварцевый генератор выключается низким уровнем на выводе 13 элемента DD1.2, а на выход селектора поступает сигнал собранного на микросхеме DD3 низкочастотного генератора импульсов с плавной перестройкой частоты от 500 до 3000 Гц. Выключателем SA1 этот генератор можно выключить. Микросхема DD2 управляет работой описанных выше генераторов при выборе режимов и частоты.

Микросхема DD6 выполняет функции фазоинвертора и амплитудного модулятора. Шесть её элементов - логических инверторов - для увеличения нагрузочной способности соединены по три параллельно. Модуляция производится периодическим с частотой импульсов генератора на микросхеме DD3 одновременным переводом выходов всех инверторов в высокоимпе-дансное состояние. Когда сигнал этого генератора выбран в качестве поискового (переключатель SA2 в положении 8), прохождение его импульсов на вход EO микросхемы DD6 запрещает высокий уровень на выводе 13 элемента DD2.4, что отключает модуляцию.

Взаимно противофазные сигналы с выходов первой (выводы 2, 5, 7) и второй (выводы 9, 11, 14) групп инверторов микросхемы DD6 поступают через прерыватели на транзисторах VT4 и VT5 на входы плеч двухтактного усилителя мощности на транзисторах VT3, VT6- VT8, в коллекторные цепи которых включена первичная обмотка трансформатора T1. Оба прерывателя синхронно открываются и закрываются импульсами мультивибратора на транзисторах VT1 и VT2, следующими с частотой 0,1...1 Гц. В результате выходной сигнал генератора периодически включается и выключается с этой частотой, что помогает опознать его при приёме на слух среди помех. Частоту прерывания сигнала можно регулировать переменным резистором R16. Соотношение длительности включённого и выключенного состояний изменяют переменным резистором R17.

Имеющийся в возбудителе стабилизатор напряжения на интегральном стабилизаторе DA1 понижает поступающее от описанного ниже блока питания напряжение U пит1 (12...14 В) до 11 В и стабилизирует его. Это напряжение питает все узлы возбудителя.

Сигнал с вторичной обмотки трансформатора T1 подан на выходной усилитель мощности, схема которого изображена на рис. 2. Он тоже двухтактный и состоит из предоконечной ступени усиления на транзисторах VT9 и VT10 и оконечной ступени на транзисторах VT11-VT16. Выходной трансформатор T2 имеет вторичную обмотку с отводами, что позволяет работать на нагрузки различного сопротивления, подключая их к соответствующим гнёздам XS1 - XS7. Напряжение, указанное у этих гнёзд, относится к работе генератора от аккумуляторной батареи на 12 В. При работе от сети 220 В подаваемое на оконечный усилитель напряжение питания U пит2 можно регулировать в пределах от 5 до 30 В, соответственно изменяя выходное напряжение генератора и максимальную отдаваемую им в нагрузку мощность.

Светодиоды HL1 и HL2, подключённые через ограничительный резистор R48 к части вторичной обмотки трансформатора T2, служат индикаторами наличия напряжения на выходе генератора. По яркости их свечения можно судить о его установленном уровне. При желании один из этих светодиодов можно заменить любым обычным диодом.

Продолжение следует


Дата публикации: 23.11.2014

Мнения читателей
  • Михаил / 02.02.2019 - 12:32
    Можно фото платы и устройство посмотреть
  • Константин / 01.03.2018 - 16:50
    Добрый вечер. Такой вопрос. как я понял на втором рисунке только усилитель сигнала, будет ли данный усилитель работать если вместо первой схемы подключу свой генератор сигнала на микроконтроллере (atmega или STM) которые выдают нужную мне частоту с напряжением в 5 вольт. усилитель будет также питаться от 12 вольт. просто нужен генератор работающий на частотах (512, 1024, 1450, 8928, 9820 Гц) и как я понял первую схему для таких частот переделать не получится.
  • Сергей / 01.04.2016 - 08:07
    1.Схему приемника готовлю к публикации и доработанную схему генератора на любой частотный диапазон. 2.Выходные транзисторы в данной схеме неубиваемые, даже при КЗ на нагрузке(если радиатор подходящий по площади был). 3.Трансформатор выходной лучше намотать на 2-х кольцах марки 2000НМС, 120*80*12, соединительные провода выполнять как можно короче.Можно выполнить и на сердечнике от отклоняющей системы старых цветных телевизоров, но выполненные трансформаторы на нем не работают на частотах в сильных магнитных полях более 25 кГц и менее 1000 Гц, это надо учесть. 4.Сложная схема, да -но рабочая.Питание 36 вольт подать можно, но при этом надо учесть, что на холостом ходу напряжение на первичной обмотке возрастет до 200 вольт в импульсе. указанные выходные транзисторы выйдут из строя.
  • Павел / 13.03.2016 - 23:51
    добрый вечер, а какой приемник использовать для этого генератора?
  • электра / 08.02.2016 - 22:07
    сложновато да и оконечные транзисторы уж больно любят улетать
  • Андрей / 02.03.2015 - 08:44
    Очень полезно. А про трансформатор Т2, можно более подробно? Заранее благодарен.
  • Евгений / 25.11.2014 - 16:19
    Эадающий очень сложный,можно проще.Выходной слабоват,я бы дал 36в.

Большинство силовых трасс прокладываются под землёй, что улучшает их устойчивость от поверхностных механических и климатических воздействий. Однако, с другой стороны, в случае неисправности определить точку потери контакта или короткого замыкания, (особенно в условиях плотной городской застройки) весьма затруднительно. В таких случаях прибегают к помощи специальных приборов – трассоискателей кабельных линий.

Принцип действия кабельных трассоискателей

Кроме мониторинга состояния кабельной трассы, рассматриваемые приборы могут также установить точное месторасположение кабеля (причём не только в земле, но и в стенах сооружений), устанавливать глубину его залегания, обнаруживать различные подземные объекты. Их применение особенно эффективно при прокладке новых кабельных сетей, поскольку позволяет оптимизировать объём и трудоёмкость требующихся земляных работ.

Трассоискатель кабельных линий реализует известное явление электромагнитной индукции, при котором любой металлический проводник с током образует вокруг себя электромагнитное поле. В случае силового кабеля – это ток рабочего напряжения линии, для стального трубопровода – вихревой ток наводки. Именно такие токи и улавливаются прибором.

Рассматриваемые приборы могут функционировать по активной и пассивной схеме. Первая более эффективна, а потому преимущественно применяется в тех случаях, когда на исследуемом участке плотно расположено несколько подземных коммуникаций.

Сложность поиска заключается в том, что насыщенность грунта такими проводниками весьма высокая, поэтому в итоговый сигнал, регистрируемый трассоискателем, могут «вплетаться» и источники от других, исправных или не подлежащих в данный момент контролю, линий. Поэтому отличительной особенностью и достоинством современных трассоискателей активного типа является возможность сравнительно простой и — в то же время – точной отстройки показаний, имеющих отношение к строго определённой кабельной линии. Такая возможность определяется наличием в схеме трассоискателя двух самостоятельных узлов – генератора и приёмника сигналов.

Генератор обеспечивает подачу на проводник электрического сигнала определённой частоты. Она не только не может совпадать с обычно используемой для сетей переменного тока частотой 50 Гц, но и должна быть как можно более отличной от этого значения. Таким образом минимизируется вероятность случайных помех или наводок (особенно это касается подземных трубопроводов, ток наводки которых, вообще говоря, неизвестен).

Трассоискатель кабельных линий, работающий по активному типу, в свою очередь может использовать различные способы передачи сигнала:

  • Метод прямого подключения характеризуется наличием непосредственного контакта проводника с кабелем. В этом случае сигнал передаётся точно, без искажения;
  • Метод индуктивного наведения , когда передача сигнала производится при помощи специальной антенны, причём она должна быть размещена непосредственно над кабелем;
  • Метод сопряжения , при использовании которого кабель во время прокладки в определённом месте охватывается регулируемой по диаметру клипсой. Она и создаёт требуемое электромагнитное поле.

Если насыщенность участка подземными сетями невелика, то можно обойтись и трассоискателем, который изготовлен по пассивной схеме. В этом случае для поиска действующего силового кабеля используется та величина электромагнитного поля, которое он создаёт. Однако, кроме простоты схемы, такие приборы отличаются существенным недостатком: они не способны противодействовать помехам от соседних проводников, а потому результирующая точность трассировки заметно ухудшается. Пассивные трассоискатели, в частности, не используются вблизи ЛЭП или электрифицированных участков железных дорог.

Последовательность работ и конструкция трассоискателя

При повреждении кабеля, в частности, его изоляции, в дефектном месте вследствие воздействия подземной влаги происходит утечка тока. Установив контактный щуп, отслеживают его значение тока утечки вдоль трассы, которое в проблемном месте будет наибольшим. В таких ситуациях достаточно трассоискателя с аналоговой обработкой сигнала. Однако при необходимости определить значение тока короткого замыкания потребуется более чувствительный прибор цифрового типа. Он, после подключения щупов и генератора, производит непрерывную обработку поступающего периодического сигнала, с определённым декрементом затухания, а потом – с резким подъёмом уровня. Именно в этом месте и происходит утечка.

Современный трассоискатель кабельных линий состоит из следующих узлов:

  1. Батарей питания, которые обычно располагаются в ручке прибора.
  2. Блока переключения питания и изменения чувствительности.
  3. Светодиодного индикатора питания.
  4. Высокочастотного излучателя, которые генерирует управляющие электромагнитные импульсы (до 2…2,5 ГГц).
  5. Указателя месторасположения объекта (экрана, мини-дисплея или лазерного луча).
  6. Микроволновых боковых (слева и справа) приёмников, которые обеспечивают приём сигнала, отражаемого исследуемым кабелем или трубопроводом. Каждый из приёмников снабжается своим светоиндикатором.

Наличие двух индикаторов позволяет оператору во время трассировки использовать оба светодиода: если кабель располагается слева от прибора, активируется левый, если справа – правый. При расположении трассоискателя непосредственно над определяемым объектом горят оба индикатора. Направление кабеля устанавливается медленными колебательными перемещениями корпуса прибора вдоль примерной оси залегания определяемого объекта.

Поскольку трассоискатель кабельных линий представляет собой мобильный компактный прибор, то он комплектуется специальным кейсом, а корпус устройства выполняется из ударостойкого пластика.

Основные производители трассоискателей и характерные особенности их продукции

Наиболее компактными и современными считаются трассоискатели от фирмы Tempo (США) . Локаторы типа AML обеспечивают своевременный и точный захват оси кабеля, что ускоряет процесс трассировки. Питание трассоискателей – батарейное (создаётся возможность непрерывной работы до 4 часов), а вес прибора не превышает 1 кг. Однако трассоискатели Tempo требуют специально обученного персонала, который верно бы интерпретировал показания приборов. Цена таких трассоискателей, в зависимости от их характеристик и возможностей, находится в пределах 65…140 тыс. руб.

Отечественные трассоискатели 3M Dynatel — полустационарного типа, с индукционными захватами – отличаются наличием фиксированного набора частот (от 4 до 6). Более дешёвые модели не обладают возможностью устанавливать ток утечки, а допускают лишь точное определение места повреждения или прохождения кабеля. Цена комплектов составляет 80…120 тыс. руб.

Бюджетными вариантами трассоискателей, производимых в России, считаются приборы модельной линейки «Поиск» . Данные трассоискатели комплектуются специальными антеннами. Они позволяют определять глубину залегания кабеля, и устанавливать дефектный кабель при многожильном варианте прокладки. Цена от 25 до 65 тыс. рублей.

Кроме указанных производителей, для определения неисправности подземных кабелей используется техника от компаний Radiodetection, MetroTech (США), а также отечественные трассоискатели «Сталкер».

Трассоискатель кабельных линий своими руками

Трассоискатель можно изготовить и в домашних условиях. Простейший прибор включает в себя тональный RC-генератор сигнала, собираемый на транзисторах, фазоинвертор, управляющее реле, выходной трансформатор и блок питания, который должен обеспечивать стабильность подаваемого на прибор напряжения. Магнитная антенна с усилителем сигнала подключается на выходные телефоны.

Такой трассоискатель нуждается в предварительной наладке, для чего применяется обычный осциллограф. При заданной частоте (обычно не менее 1000 Гц) отстройка выполняется по уровню свечения лампочки.

При настройке приёмника вначале настраивают RC-контур на нужную частоту, для чего применяют обычный звуковой генератор.

При компоновке самодельного трассоискателя важно, чтобы щуп имел минимальную длину и сечение, не менее 2 мм, а расстояние от него до генератора не превышало 500 мм. Точность трассировки устанавливается по уровню выходного звукового сигнала.